1.多普勒天气雷达的重要意义

2.多普勒天气雷达的工作原理

3.多普勒天气雷达能够测量( )

4.气象雷达有哪些类型?

5.雷达怎么会预测天气?

6.天气雷达对周围草场的作用

7.天气雷达的特点

8.雷达会受到天气影响吗?

实况卫星云图_雷达天气

无论光学、声学还是电学,都存在原理本身难以克服的劣势。由于采用可见光或近红外外作为探测媒介,光在传播过程中易受到悬浮在空气中的粉尘或水滴的影响,因此激光雷达在雨雪雾霾天、沙尘暴等恶劣天气中表现欠佳。

首先工作时受天气和大气的影响大。激光一般在晴朗的天气里衰减较小,传播距离较远。而在大雨、浓烟、浓雾等坏天气里,将衰减急剧加大,传播距离大受影响。比如工作波长为10.6μm的co2激光,是所有激光中大气传输性能较好的,在坏天气的衰减是晴天的6倍的。地面或低空使用的co2激光雷达的作用距离是,晴天为10-20km,而坏天气则降至1 km以内。而且大气环流还会使激光光束发生畸变、抖动,直接影响激光雷达测量的精度。其次由于激光雷达的波束极窄,在空间搜索目标非常困难,会直接影响对非合作目标的截获概率和探测效率,只能在较小的范围内搜索、捕获目标,因此激光雷达较少单独直接应用于战场进行目标探测和搜索。

如果想了解激光雷达的问题,推荐咨询北醒(北京)光子科技有限公司。北醒(北京)光子科技有限公司现在产品核心优势:1. 产品帧率高、体积小、成本低、接口多;2. 北醒激光雷达现已实现量产,年产能达到60万台;3. 其中代理商100+,合作伙伴覆盖全球超过64个国家和地区。公司立志于将昂贵的激光雷达打造成满足消费级产品的核心部件,推动智能机器人走入千家万户。点击了解激光雷达产品与应用详情介绍

多普勒天气雷达的重要意义

利用微波反射探测大气从而预测天气。

气象雷达通过方向性很强的天线向空间发射脉冲无线电波,它在传播过程中和大气发生各种相互作用。如大气中水汽凝结物(云、雾和降水)对雷达发射波的散射和吸收;非球形粒子对圆极化波散射产生的退极化作用,无线电波的空气折射率不均匀结构和闪电放电形成的电离介质对入射波的散射,稳定层结大气对入射波的部分反射;以及散射体积内散射目标的运动对入射波产生的多普勒效应等。

多普勒天气雷达的工作原理

多普勒雷达是目前世界上最先进的雷达系统,有“超级千里眼”之称。相较于传统天气雷达,多普勒雷达能够监测到位于垂直地面8-12公里的高空中的对流云层的生成和变化,判断云的移动速度,其产品信息达72种,天气预报的精确度比以前将会有较大提高。1991至1997年,美国在全国及海外布网的165台NEXRDA被称为天气雷达系统的典范,是目前世界上最先进的和最精确的天气雷达系统。它所采用的多普勒信号处理技术和自动产生灾害性天气警报的能力无与伦比。NEXRAD可以自动形成和显示丰富多彩的天气产品,极大地提高了对超级单体、湖泊效应雪、成层雪、雷暴、降水、风切变、下击暴流、龙卷、锋面、湍流、冰雹等重大灾害性天气的监测和预报能力。对强雷暴的侦察率是96%,对龙卷的发现率是83%,对龙卷警告的平均预警时间是18分钟,而在未建NEXRDA网络之前,美国国家上述参数的平均值分别是60%,40%和2分钟。从中可以预料CINRDA将从根本上增强探测强雷暴的能力,能较早地探测到晴空下威胁航行的大气湍流和发生灾害性洪水的可能,并为水资源的管理决策提供极有价值的信息。新一代天气雷达系统建设是我国20世纪末21世纪初的一项气象现代化工程,计划在全国建成S频段和C频段雷达156部,该系统建成后,我国的气象现代化水平会上一个新的台阶。

多普勒天气雷达能够测量( )

多普勒效应(Doppler effect)是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒(Christian Johann Doppler)而命名的,他于1842年首先提出了这一理论。多普勒认为,物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移 (blue shift))。在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移 (red shift))。波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。恒星光谱线的位移显示恒星循着观测方向运动的速度。除非波源的速度非常接近光速,否则多普勒位移的程度一般都很小。所有波动现象(包括光波) 都存在多普勒效应。

天气雷达间歇性地向空中发射电磁波(称为脉冲式电磁波),它以近于直线的路径和接近光波的速度在大气中传播,在传播的路径上,若遇到了气象目标物,脉冲电磁波被气象目标物散射,其中散射返回雷达的电磁波(称为回波信号,也称为后向散射),在荧光屏上显示出气象目标的空间位置等的特征。

在雷达探测中,气象目标的空间位置是用雷达天线至目标物的直线距离R(亦称斜距),雷达天线的仰角和方位角来表示。斜距R可根据电磁波在大气中的传播速度C和探测脉冲与回波信号之间的时间间隔来确定。电磁波在大气中传播速度是略小于它在真空中的传播速度,但对斜距精度影响不大,故近似用C来表示。

气象雷达有哪些类型?

多普勒天气雷达能够测量:径向风速。

多普勒天气雷达能够测量的一个脉冲到下一个脉冲的最大相移的上限是180°(π)。与180°脉冲对相移所对应的目标物径向速度值称为最大不模糊速度Vmax。

多普勒天气雷达的工作原理即以多普勒效应为基础,可以测定散射体相对于雷达的速度,在一定条件下反演出大气风场、气流垂直速度的分布以及湍流情况等。这对警戒强对流天气等具有重要意义。

多普勒天气雷达的简介:

多普勒效应是奥地利物理学家J.Doppler1842年首先从运动着的发声源中发现的现象,多普勒天气雷达的工作原理即以多普勒效应为基础,具体表现为:当降水粒子相对雷达发射波束相对运动时,可以测定接收信号与发射信号的高频频率之间存在的差异,从而得出所需的信息。

运用这种原理,可以测定散射体相对于雷达的速度,在一定条件下反演出大气风场、气流垂直速度的分布以及湍流情况等。这对研究降水的形成,分析中小尺度天气系统,警戒强对流天气等具有重要意义。

以上内容参考多普勒天气雷达

雷达怎么会预测天气?

凡是不具有多普勒性能的雷达称为非相干雷达或常规气象雷达,具有多普勒性能的雷达称为相干雷达或多普勒雷达。主要的气象雷达有:

测云雷达

是用来探测未形成降水的云层高度、厚度以及云内物理特性的雷达。其常用的波长为1.25厘米或0.86厘米。工作原理和测雨雷达相同,主要用来探测云顶、云底的高度。如空中出现多层云时,还能测出各层的高度。由于云粒子比降水粒子小,测云雷达的工作波长较短。测云雷达只能探测云比较少的高层云和中层云。对于含水量较大的低层云,如积雨云、冰雹等,测云雷达的波束难以穿透,因而只能用测雨雷达探测。

测雨雷达

又称天气雷达,是利用雨滴、云状滴、冰晶、雪花等对电磁波的散射作用来探测大气中的降水或云中大滴的浓度、分布、移动和演变,了解天气系统的结构和特征。测雨雷达能探测台风、局部地区强风暴、冰雹、暴雨和强对流云体等,并能监视天气的变化。

测风雷达

用来探测高空不同大气层的水平风向、风速以及气压、温度、湿度等气象要素。测风雷达的探测方式一般都是利用跟踪挂在气球上的反射靶或应答器,不断对气球进行定位。根据气球单位时间内的位移,就能定出不同大气层水平风向和风速。在气球上同时挂有探空仪,遥测高空的气压、温度和湿度。

圆极化雷达

一般的气象雷达发射的是水平极化波或垂直极化波,而圆极化雷达发射的是圆极化波。雷达发射圆极化波时,球形雨滴的回波将是向相反方向旋转的圆极化波,而非球形大粒子(如冰雹)对圆极化波会引起退极化作用,利用非球形冰雹的退极化性质的回波特征,圆极化雷达可用来识别风暴中有无冰雹存在。

调频连续波雷达

它是一种探测边界层大气的雷达。有极高的距离分辨率和灵敏度,主要用来测定边界层晴空大气的波动、风和湍流(见大气边界层)。

天气雷达对周围草场的作用

气象雷达是专门用来探测大气中云雨的分布和变化、降水强度、云层的高度和厚度、不同大气层里的风向风速和其他气象要素的雷达。主要有测雨雷达、测风雷达和测云雷达。

雷达发射的电磁波,在传播过程中被目标物所散射而被雷达接收机接收到的那部分电磁波,在雷达显示器上可显示出反映雷达回波特征的信号或图像。不同的天气系统或天气现象的回波特征不同,雷达正是根据这个原理实现气象探测的。

天气雷达回波强度取决于某些雷达参数,降水体的散射特性,散射体至雷达的距离以及波束在传播路径中受大气介质的衰减。从天气目标的回波强度及其分布,可以推断天气系统的性质;此外回波强度是雷达测量降雨量的基本数据。因此,在雷达观测中对回波强度的分析至关重要。

天气雷达的特点

天气雷达能够对周围草场进行气象监测,及时掌握降雨、风速和温度等信息,有助于农牧业生产管理和灾害预警。

天气雷达是一种用于大气微物理研究和气象预报的主要工具之一,可以通过扫描和接收回波信号,快速准确地获取目标区域内的降雨、风速和温度等气象信息。这些信息对于草场的管理和保护具有重要意义。首先,天气雷达可以提供降雨信息,帮助农牧民及时掌握草场降水情况,判断是否需要进行灌溉或排水等措施,从而优化草场生长环境,提高草地利用率。

同时,天气雷达还可以检测到强风等极端天气,为农牧民提供防范措施,避免因强风导致的草原火灾等事故。

雷达会受到天气影响吗?

天气雷达的结构有以下一些特点:①采用对数中频放大器。它可使输出近似正比于输入信号强度的对数,从而保证变化范围比较大的云和降水回波强度都能得到相应的显示。②有距离订正。由于接收功率Pr和距离R的平方成反比(见气象雷达方程),经距离订正后便可直接比较不同距离上的回波的强弱。③具有视频积分处理器(VIP)。由于降水回波信号具有随机起伏的性质,需要把探测范围分成苦干小区域,对每一个小区域的回波信号进行平均。然后,按回波强度,实现黑白、彩色和数字分层显示。④定量测定降水的雷达已有实时监测雷达参数设备。⑤先进的天气雷达已由电子计算机控制,并由电子计算机处理气象资料,如降水量、气流速度等。

雷达天气观测是指用雷达对本站四周一定范围内天气的观察和探测。观测内容包括回波和强回波中心的位置、回波的强度、移速、移向、回波的性质、形状、发展趋势等。观测结果需迅速描图记录,遇到复杂和重要的天气时,需立即连续拍照或录像。雷雨季节(通常3?11月)实行的备降场

航空器在空中活动时周围的大气环境。要考虑大气对航空器所构成的影响,大气环境取决于地球表面的大气分布状态,不同高度上所对应的大气条件是不同的。对流层内还取决于航空器周围的气象条件及其变化所形成的动态环境,还会受某些危险气象因素(例如雷雨、风切变等)的影响。低空飞行时还会受地面环境构成的某些近地因素(如火山灰云、沙尘暴等)的影响。在小范围内还要考虑大气环境和航空器之间相互作用所构成的影响。例如,后机还受前机尾流的影响。